新闻资讯
湿固化型聚氨酯胶粘剂中含有活泼的NCO基团,当暴露于空气中时能与空气中的微量水分子发生反应;粘接时,它能与基材表面吸附的水以及表面存在羟基大呢感活性氢基团发生化学反应,生成脲键结构。因此湿固化型聚氨酯胶粘剂固化后的胶层组成是聚氨酯胶粘剂—聚脲结构。
将以NCO为端基的聚氨酯胶粘剂应用于软木碎屑的粘接,由林产化工厂于软木碎屑中加入胶粘剂,混合均匀,加热压制成型,制成软木板材、片材等制品,用作保温、隔音等材料,其特点是耐水、防腐蚀。该胶粘剂是聚氨酯湿固化胶粘剂和密封剂的基础粘料,若对配方稍加调整,亦即加入一定比例的三官团的聚氧化丙烯三醇(如N-330),制成的NCO端基的预聚体胶粘剂即可作为下列材料的粘料(基料):
该胶粘剂还可用于聚氨酯泡沫塑料、聚苯乙烯泡沫等的粘接,使用方便,无公害,受到用户欢迎。
按以上配方原料制成预聚体,再加人气相法二氧化硅、滑石粉等填料以及增塑剂、叔胺和有机锡类催化剂,制成含填料的预聚体。
按HDI缩二脲1610份、r-巯丙基三甲氧基硅烷40份、二甲基硅烷427份、二甲基哌嗪1.3份制成硅烷化合物。
单组分聚氨酯胶粘剂按预聚体:硅烷化合物:萜烯增粘剂=271:6:70(质量份数)混合配制。用于玻璃-帆布、铝-铝、冷轧钢-冷轧钢的粘接。
高活性聚醚多元醇与PAPI于100℃反应,制得预聚体,于此预聚体中,要3h内慢慢加人苯乙烯和丙烯腈的混合液,并每隔1h添加28份偶氮二异丁腈(ABIN),最后再反应2h,并于120℃减压抽除未反应单体,制得产品粘度为6000Pa·s,外观为浅褐色不透明的粘稠液,NCO含量为12.9%。
称取上述预聚体100份,加入20份炭黑、2.5份惰性填料,制成湿固化接枝型单组分聚氨酯胶粘剂,其剪切强度达8MPa,而且有触变性。而未接枝的胶粘剂,其剪切强度为5MPa,外观为自由流动的粘稠液。
聚醚多元醇(M=2800)200份辛酸亚锡0.4份二月桂酸二丁基锡2份萜烯酚醛树脂20份烃类溶剂10份滑石粉50份
将TDI、MDI辛酸亚锡、滑石粉以及烃类溶剂混合搅拌45-65min,再加人聚醚多元醇、萜烯酚醛树脂以及二月桂酸二丁基锡,混合均匀后制得单组分湿固型聚氨酯胶粘剂。该胶粘剂于空气中固化交联时间为4-5h,贮存期大于6个月。
1.制备湿固型聚氨酯胶粘剂所用的聚醚多元醇有聚氧化丙烯二醇及三醇、聚四氢呋喃二醇、共聚醚二醇及三醇等。常用的聚酯有聚己二酸—烷基二醇及三醇等。这些齐聚物多元醇分子量通常在500-3000之间。
聚醚多元醇型预聚体粘度小,成本低。聚酯型聚氨酯预聚体粘度较大,但制成胶的粘合强度比聚醚型要好,有的预聚体采用聚酯和聚醚混合体系作为多元醇原料。
2.大多数单组分湿固化型胶粘剂的适用期较长,可在室温下固化,因以水为固化剂,因此要求空气的相对湿度至少在40%以上,固化时间最短需0.5-1h,长者至数十小时,如是才能达到表面不粘的程度。因此,通常需用夹具将粘接件固定。粘接面积不宜太大,以免胶层中间固化不完全。有的湿固化型聚氨酯胶粘剂在施胶时,采用增湿器或水解决固化时间长的问题。
3.湿固化聚氨酯胶粘剂中异氰酸酯基(NCO)的含量对胶的性能有较大的影响。一般,NCO含量低,预聚体分子量较高,则胶的粘度大,胶的贮存期、适用期和固化时间较短。粘度过大时需加溶剂或增塑剂进行稀释,以使之达到合适的施胶粘度。NCO含量高,则胶的粘度小,可制得无溶剂单组分胶粘剂,贮存期和固化时间相对较长。湿固化聚氨酯胶粘剂中NCO含量通常在2%—10%之间。
4.胶层的涂胶量要影响固化时间。涂胶层薄,则固化时间短。在粘接非常干燥的材料或涂胶量多的场合,作为固化剂的水分量相对来说显得不充分,或不易渗透到胶层内部,需很长时间才能完全固化,有的甚至固化不完全。提高固化温度,有利于水分参加反应,缩短固化时间。当被粘材料的含水量过高、空气湿度较大、胶所含的NCO含量较高、固化温度又较高时,胶粘剂固化较快。这种情况下易产生较多的二氧化碳,而使胶层产生泡沫,降低粘合强度。
由预聚体—潜固化剂组成的湿固化型单组分聚氨酯胶粘剂,当它遇到潮气或水分时,潜固剂分解成含活性氢基团的化合物,这种化合物与NCO基团反应的活性比水高,能显著提高胶粘剂的初粘性,同时可避免胶层产生气泡。
将端羟基聚丁二烯100份和TDI34.5份制成预聚体,25℃下将预聚体与甲苯二胺丁酮亚胺20份搅拌均匀,即制成单组分胶粘剂。将它用于软PVC薄膜的粘合,180。剥离强度为2.1kN/m。
由酮亚胺作潜固剂制成的单组分聚氨酯胶粘剂,存在着贮存稳定性问题,因为酮亚胺也能极缓慢地直接与NCO基团反应,贮存过程中粘度慢慢增加。也有报道指出,在组分中添加沸石吸附1,8-二胺基-对盖烷与异辛醛的缩合物(酮亚胺),50℃密封贮存一周后,粘度没有增加,若在20℃固化,只需12h信与不加沸石的胶粘剂相比,贮存稳定性得到提高,固化时间也缩短了。
在室温下稳定的单组分胶粘剂,加热后会使其内部组成发生化学反应而得以固化。组成中的活性氢或异氰酸酯基以掩蔽形式存在,这种*热源固化的单组分聚氨酯胶粘剂稳定性好,固化后没有副产物产生,因此粘合强度特别优秀。
1.一种体系中,羟基组分为固态,室温时对异氰酸酯为非反应性,异氰酸酯组分为端基NCO基预聚体,两种组分混匀后密封保存,使用时加热,则微小而分散均匀的多元醇颗粒熔化并与NCO基团反应,得以固化。AccuthaneUR-1100(美国H.B.Fuller公司)是热固化单组分聚氨酯胶粘剂,物性如下:拉伸强度,16.5MPa,伸长率32%,硬度(邵尔D)68-72,梁式缺口冲击强度为23.5J/m。
2.另一种单组分聚氨酯体系中,多异氰酸酯固体分散于多元醇中,多异氰酸酯组分可以是TDI二聚体的微粒,预先用胺或水进行表面失活,这种单组分聚氨酯胶粘剂可有3个月以上的室温贮存期,在70-180℃容易固化。
1.由4,4-二苯胺甲烷(MDA)的氯化钠复合物与二异氰酸酯形成稳定的、混合组成的单组分聚氨酯胶粘剂,使用时加热固化。
2.N,N-二取代-5-乙酰亚胺咪唑烷酮将羟基多元醇掩蔽起来,与多异氰酸酯组分混合配制成室温稳定的单组分聚氨酯胶粘剂,加热至140℃以上进行固化。
利用双环脲化合物,加热成能分解成二异氰酸酯的原理,将双环脲类化合物与羟基组分混合,可制成热固化单组分聚氨酯胶粘剂。双环脲化合物分解反应如下:
把NCO端基预聚体或多异氰酸酯中的异氰酸酯基团在一定条件下用封闭剂(blocking agent)封闭起来,就成为封闭型预聚体或多异氰酸酯,实际上就是把NCO基团保护起来,使其在常温下没有反应活性,变成稳定的“基团”,当加热到一定温度发生离解,又生成活性的NCO基团,与活性氢化合物(如多元醇、水等)发生化学反应,生成聚氨酯树脂。封闭剂也是含活性氢的化合物,不过氢原子的活性较小,一般BH中B为吸电子基,电负性小,故BH与NCO基团的反应活性也较低。多数的封闭剂解离温度较高。异氰酸酯基团的封闭剂种类很多,有酚、醇、仲(叔)胺、亚硫酸氢盐等。封闭型异氰酸酯的解离温度
在60-200℃之间,解离温度受不同封闭剂和异氰酸酯结构的影响,在相同封闭剂时,HDI比TDI的封闭解离温度要高10-20℃,加入叔胺类或有机锡类催化剂可降低解离温度,加速解离反应。常用封闭剂及其解离温度见表。
常用封闭剂解离温度封闭剂解离温度,℃无催化剂有催化剂乙醇-155苯酚-110己内酰胺160--丙二酸二乙酯130-140--乙酰乙酸乙酯-130丙酮脘130-150--甲基乙基酮脘-130乙酰丙酮140-150--咪啜类130-140--亚硫酸氢钠60--
TMP-TDI加成物用3摩尔(或略过量)的苯酚或甲酚封闭。将苯酚溶于醋酸乙酯中,把TMP-TDI加成物的溶液按摩尔数加入,混匀(或苯酚稍过量2%-5%)。溶液加热至100℃,保持数小时(或可加入少量叔胺以促进反应),取样以丙酮稀释,倒人苯胺而无沉淀析出时,表示异氰酸酯已封闭完成,即可停止。蒸除溶剂,得到固体产品,软化点120-130℃,含12%-13%有效NCO基,是封闭型聚氨酯中常用的交联剂。
由3摩尔TDI与3摩尔苯酚在150℃反应,在TDI的4位上生成氨酯,再将上述氨酯在160℃加热,并加入催化剂使其三聚而成。产品全溶于醋酸乙酯和丙酮。苯酚封闭的TDI三聚异氰酸酯,因含稳定的三聚异氰酸酯环,比上述苯酚封闭的TMP-TDI加成物的耐热性高。3. e-己内酰胺封闭的PAPI
聚己二酸一缩二乙二醇(羟值98mgKOH/g,酸值1.4mgKOH/g)经脱水处理后,取100份加入反应器中,然后加入份、甲苯35份,于100-110℃反应5h后,制成含NCO端基的预聚体溶液,再加入15份丁酮脘,于100℃反应5h,制得封闭型预聚体。
放射线固化型聚氨酯胶粘剂是以电子射线或光固化的胶粘剂,这类胶粘剂的结构特点是在NCO端基预聚体中加入少量活泼氢(一般为羟基)的丙烯酸酯类,使之生成含丙烯酸酯基的聚氨酯。这种聚氨酯分子中的丙烯酸酯基能在电子射线或紫外光作用下发生自由基聚合而使聚氨酯交联固化。其固化特点是快,室温或低温即可固化,因而节省能源,提高了劳动生产率。这类用放射线固化的聚氨酯丙烯酸酯胶粘剂在国外开发的品种较多,并获得广泛应用。
放射线固化中使用的放射线通常是紫外线和电子束。作为胶粘剂的树脂体系,仅在是否需要光反应引发剂上有些差别,而从本质上讲是相同的,因此把这两种类型的胶粘剂合并一起称放射线固化胶粘剂。
在胶粘剂中应用放射固化反应的主要优点是可以缩短胶粘剂的固化时间。目前各类生产企业中使用品种繁多的胶粘剂,但其固化时间长,成了生产过程中一个“卡口”。为此,在不少情况下不得不放弃利用胶粘剂来实现降低重量、提高可*性、提高生产率、降低成本的打算。固化时间较快的胶粘剂有o-氰基丙烯酸酯类胶粘剂(例如502快速胶粘剂)和热熔型胶粘剂等,但其应用范围未必很广。例如氰基丙烯酸酯类胶粘剂虽然对于几乎所有的材料都呈现出良好的粘合性,而且固化迅速,但其适用温度上限为80℃左右,冲击强度和耐湿性也差,故用途有限。热熔型胶粘剂一般由热塑性树脂组成,并运用热熔融—冷固化工艺,所以耐热性和耐化学药品性能差,仅适用于瓦楞纸、制罐、木材组装等。
放射线固化胶粘剂的另一优点是能量的利用率高。在热固化的操作中,不得不进行整体加热,即被加热的不仅仅是胶粘剂,而且也包括被粘体。然而在使用放射线的场合,尽管要根据被粘体的品种和厚度开选用紫外线或电子束,但却可做到把能量集中在胶粘剂层上,因此能量的利用率明显提高。此外,由于不对被粘体进行加热即可完成粘接,所以对热稳定差的被粘材料均可用此法进行粘接。
固化反应中使用的紫外线nm的电磁波,它具有数电子伏到数十电子伏的能量。紫外线虽然拥有足以使化学物质发生化学反应的能量,但它与丁射线以及加速电子束比较,能量要小得多,故穿透力小。对于透明材料可以采用紫外线固化,例如透镜、多层玻璃、透明塑料等的粘接。由于能量低,为了把能量有效地应用于固化反应,需要在固化树脂组成中添加光反应引发剂或光敏剂。紫外线辐照设备费用为电子束辐照设备的,因此设备投资低。紫外线发生辐照装置中,多用空气冷却式高压水银灯作光源,最常用的这种灯的输人为15kW,可达到160W/cm。此外,水银中掺加钾、铁、锡等卤化物而制成的波长范围为250-450nm、具有连续能量的空气冷却式金属卤化物灯已有实际应用。只是由于紫外线穿透力弱,应用范围有限。
电子束辐照能量为10万电子伏到5兆电子伏的加速电子,加速电子束由于是电子,所以与相同能量的丁射线比较穿透力要弱得多,不过与紫外线相比能量要大得多,穿透力也强。对于不透明的材料一定要用电子束,电子束的穿透力决定于它的能量(也即加速电压),为此要选用能量与固化系统适配的加速器。电子束辐照设备初期投资虽然较大,但能量的利用效率要比紫外线高得多,电子束固化时间虽因固化树脂组成的不同而异,但与紫外线固化时需若干秒左右相比较,使用电子束仅为数毫秒而已,固化速度是相当快的。另外,在固化树脂组成中不需要添加光反应引发剂,故可降低这一部分的成本,而且还有胶粘剂贮存期长等优点。如被粘体是高分子材料,由于电子束的能量高,在被粘体和胶层分子内估计还可能发生接枝和交联反应,这种情况是好的,但值得注意的是,有时也会使被粘体分子链老化和导致稳定剂、防老剂、增粘树脂等添加剂发生变化。
电子束加速器是依照高压发生方式、电子束源的形状等分类的。就高压发生方式而沦,有范德格拉夫(Van de Gralf)型、改型高压倍加器(cockcmflwdton)型、绝缘铁芯型等。它们都是通过加速点电子流和施加扫描电压使电子束在规定幅度内振动的类型。市场上销售的此类装置规格为300keV和30kW-5MeV,10kW。
在市场上还可见到不需要特殊辐照设施自屏蔽型500keV以下的低能加速器,这种加速器的实用下限电压为150keV。这种低能装置采用线型灯丝,不通过电子流扫描就能得到所需宽度的辐照用电子束。
①.将甲苯二异氰酸酯-聚氧丙烯二醇-丙烯酸羟乙酯反应制得的聚氨酯丙烯酸酯树脂,与醋酸乙烯酯、丙烯酸羟乙酯、磷酸二苯基辛酯、对甲氧基苯酚配制成的电子束固化胶粘剂,可用于粘接聚酯薄膜和塑料层压板材。
②.马来酸120份、丁基缩水甘油醚130份制得反应产物130份,将之与丙烯酸丁酯100份、TDI35份反应制得聚氨酯丙烯酸酯树脂80份,再加入醋酸乙烯酯20份制得电子柬固化的胶粘剂,应用于塑料薄膜复合,所得胶层耐水、耐药品、耐候、耐热,聚酯薄膜(12um)-铝箔(9um)剥离强度高达1480g/15mm。